Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38572540

RESUMEN

Cold exposure increases blood pressure (BP) and salivary flow rate (SFR). Increased cold-induced SFR would be hypothesised to enhance oral nitrate delivery for reduction to nitrite by oral anaerobes and to subsequently elevate plasma [nitrite] and nitric oxide bioavailability. We tested the hypothesis that dietary nitrate supplementation would increase plasma [nitrite] and lower BP to a greater extent in cool compared to normothermic conditions. Twelve males attended the laboratory on four occasions. Baseline measurements were completed at 28°C. Subsequently, participants ingested 140 mL of concentrated nitrate-rich (BR; ~13 mmol nitrate) or nitrate-depleted (PL) beetroot juice. Measurements were repeated over 3 h at either 28°C (Norm) or 20°C (Cool). Mean skin temperature was lowered compared to baseline in PL-Cool and BR-Cool. SFR was greater in BR-Norm, PL-Cool and BR-Cool than PL-Norm. Plasma [nitrite] at 3 h was higher in BR-Cool (592 ± 239 nM) vs. BR-Norm (410 ± 195 nM). Systolic BP (SBP) at 3 h was not different between PL-Norm (117 ± 6 mmHg) and BR-Norm (113 ± 9 mmHg). SBP increased above baseline at 1, 2 and 3 h in PL-Cool but not BR-Cool. These results suggest that BR consumption is more effective at increasing plasma [nitrite] in cool compared to normothermic conditions and blunts the rise in BP following acute cool air exposure, which might have implications for attenuating the increased cardiovascular strain in the cold.

2.
Eur J Appl Physiol ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38040982

RESUMEN

PURPOSE: Dietary nitrate (NO3-) supplementation can lower systolic blood pressure (SBP) and improve exercise performance. Salivary flow rate (SFR) and pH are key determinants of oral NO3- reduction and purported to peak in the afternoon. We tested the hypotheses that NO3--rich beetroot juice (BR) would increase plasma [nitrite] ([NO2-]), lower SBP and improve exercise performance to a greater extent in the afternoon (AFT) compared to the morning (MORN) and evening (EVE). METHOD: Twelve males completed six experimental visits in a repeated-measures, crossover design. NO3--depleted beetroot juice (PL) or BR (~ 13 mmol NO3-) were ingested in the MORN, AFT and EVE. SFR and pH, salivary and plasma [NO3-] and [NO2-], brachial SBP and central SBP were measured pre and post supplementation. A severe-intensity exercise tolerance test was completed to determine cycling time to exhaustion (TTE). RESULTS: There were no between-condition differences in mean SFR or salivary pH. The elevation in plasma [NO2-] after BR ingestion was not different between BR-MORN, BR-AFT and BR-EVE. Brachial SBP was unchanged following BR supplementation in all conditions. Central SBP was reduced in BR-MORN (- 3 ± 4 mmHg), BR-AFT (- 4 ± 3 mmHg), and BR-EVE (- 2 ± 3 mmHg), with no differences between timepoints. TTE was not different between BR and PL at any timepoint. CONCLUSION: Acute BR supplementation was ineffective at improving TTE and brachial SBP and similarly effective at increasing plasma [NO2-] and lowering central SBP across the day, which may have implications for informing NO3- supplementation strategies.

3.
Metabolites ; 13(7)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37512583

RESUMEN

Trimethylamine N-oxide (TMAO), a gut-derived metabolite and marker of gut dysbiosis, has been linked to hypertension. Blood pressure is proposed to be elevated in hormonal contraceptive users and males compared to age-matched eumenorrheic females, but the extent to which TMAO differs between these populations has yet to be investigated. Peripheral and central blood pressure were measured, with the latter determined via applanation tonometry, and plasma TMAO concentration was assessed using liquid chromatography-tandem mass spectrometry. The following variables were assessed on two occasions in each of the following conditions: the early follicular phase (EFP) and mid-luteal phase (MLP) in eumenorrheic women (n = 13), and the pill-free interval (INACTIVE) and pill consumption days (ACTIVE) in women using oral contraceptive pills (n = 12), and in men (n = 22). Briefly, 17-ß-estradiol and progesterone concentrations were quantified via ELISA in all females. There were no differences in TMAO concentration between EFP (2.9 ± 1.7 µmol/L) and MLP (3.2 ± 1.1 µmol/L), between INACTIVE (3.3 ± 2.9 µmol/L) and ACTIVE (2.3 ± 1.1 µmol/L) days, or between men (3.0 ± 1.8 µmol/L), eumenorrheic women (3.0 ± 1.3 µmol/L) and contraceptive users (2.8 ± 1.4 µmol/L). Blood pressure was consistent across the menstrual cycle and pill days, but brachial systolic blood pressure was higher in males than females. There were no differences in brachial diastolic blood pressure or central blood pressure between the sexes. Repeated measures of TMAO, blood pressure, 17-ß-estradiol and progesterone were consistent in all populations. These findings suggest that the link between TMAO and blood pressure is limited in healthy young adults.

4.
Antioxidants (Basel) ; 12(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37371924

RESUMEN

Inorganic nitrate (NO3-) has emerged as a potential ergogenic aid over the last couple of decades. While recent systematic reviews and meta-analyses have suggested some small positive effects of NO3- supplementation on performance across a range of exercise tasks, the effect of NO3- supplementation on performance during single and repeated bouts of short-duration, high-intensity exercise is unclear. This review was conducted following PRISMA guidelines. MEDLINE and SPORTDiscus were searched from inception to January 2023. A paired analysis model for cross-over trials was incorporated to perform a random effects meta-analysis for each performance outcome and to generate standardized mean differences (SMD) between the NO3- and placebo supplementation conditions. The systematic review and meta-analysis included 27 and 23 studies, respectively. Time to reach peak power (SMD: 0.75, p = 0.02), mean power output (SMD: 0.20, p = 0.02), and total distance covered in the Yo-Yo intermittent recovery level 1 test (SMD: 0.17, p < 0.0001) were all improved after NO3- supplementation. Dietary NO3- supplementation had small positive effects on some performance outcomes during single and repeated bouts of high-intensity exercise. Therefore, athletes competing in sports requiring single or repeated bouts of high-intensity exercise may benefit from NO3- supplementation.

5.
Anal Sci Adv ; 4(3-4): 60-80, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715927

RESUMEN

Research in sport and exercise science (SES) is reliant on robust analyses of biomarker measurements to assist with the interpretation of physiological outcomes. Mass spectrometry (MS) is an analytical approach capable of highly sensitive, specific, precise, and accurate analyses of a range of biomolecules, many of which are of interest in SES including, but not limited to, endogenous metabolites, exogenously administered compounds (e.g. supplements), mineral ions, and circulating/tissue proteins. This annual review provides a summary of the applications of MS across studies investigating aspects related to sport or exercise in manuscripts published, or currently in press, in 2022. In total, 93 publications are included and categorized according to their methodologies including targeted analyses, metabolomics, lipidomics, proteomics, and isotope ratio/elemental MS. The advantageous analytical opportunities afforded by MS technologies are discussed across a selection of relevant articles. In addition, considerations for the future of MS in SES, including the need to improve the reporting of assay characteristics and validation data, are discussed, alongside the recommendation for selected current methods to be superseded by MS-based approaches where appropriate. The review identifies that a targeted, mostly quantitative, approach is the most commonly applied MS approach within SES, although there has also been a keen interest in the use of 'omics' to perform hypothesis-generating research studies. Nonetheless, MS is not commonplace in SES at this time, but its use to expand, and possibly improve, the analytical options should be continually considered to exploit the benefits of analytical chemistry in exercise/sports-based research. Overall, it is exciting to see the gradually increasing adoption of MS in SES and it is expected that the number, and quality, of MS-based assays in SES will increase over time, with the potential for 2023 to further establish this technique within the field.

6.
J Diet Suppl ; 19(6): 749-771, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34151694

RESUMEN

This systematic review and meta-analysis of randomized controlled trials examined whether dietary nitrate supplementation attenuates exercise-induced muscle damage (EIMD) and is reported according to the PRISMA guidelines. Medline and SPORTDiscus databases were searched from inception to June 2020. Inclusion criteria were studies in adult humans consuming inorganic nitrate before and after exercise and that measured markers implicated in the etiology of EIMD (muscle function, muscle soreness, inflammation, myocellular protein efflux, oxidative stress, range of motion) <168 h post. The Cochrane Collaboration risk of bias two tool was used to critically appraise the studies; forest plots were generated with random-effects models and standardized mean differences (SMD). Nine studies were included in the systematic review and six in the meta-analysis. All studies were rated to have some concerns for risk of bias. All trials in the meta-analysis provided nitrate as beetroot juice, which accelerated isometric strength recovery 72 h post-exercise (SMD: 0.54, p = 0.01) and countermovement jump performance 24-72 h post-exercise (SMD range: 0.75-1.32, p < 0.03). Pressure pain threshold was greater with beetroot juice 48 (SMD: 0.58, p = 0.03) and 72 h post-exercise (SMD: 0.61, p = 0.02). Beetroot juice had no effect on markers of oxidative stress and creatine kinase (p > 0.05), but c-reactive protein was higher vs. placebo at 48 h post-exercise (SMD: 0.55, p = 0.03). These findings suggest that nitrate-rich beetroot juice may attenuate some markers of EIMD, but more large-scale controlled trials in elite athletes are needed.


Asunto(s)
Proteína C-Reactiva , Ejercicio Físico , Músculo Esquelético , Nitratos , Adulto , Humanos , Antioxidantes , Creatina Quinasa , Suplementos Dietéticos , Mialgia/prevención & control , Mialgia/tratamiento farmacológico , Nitratos/uso terapéutico , Ejercicio Físico/efectos adversos
7.
Antioxidants (Basel) ; 12(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36670889

RESUMEN

Short-term dietary nitrate (NO3−) supplementation has the potential to enhance performance during submaximal endurance, and short-duration, maximal-intensity exercise. However, it has yet to be determined whether NO3− supplementation before and during submaximal endurance exercise can improve performance during a short-duration, maximal-intensity end-sprint. In a randomised, double-blind, crossover study, 9 recreationally active men ingested NO3−-rich (BR: 8 mmol NO3−/day) and NO3−-depleted (PL: 0.75 mmol NO3−/day) beetroot powder for 7 days. On day 7, participants completed 2 h of moderate-intensity cycling, which immediately transitioned into a 60 s maximal-intensity end-sprint, with supplements ingested 2 h before and 1 h into the moderate-intensity exercise bout. Plasma [NO3−] and [NO2−] were higher in BR compared to PL pre- and post-exercise (p < 0.05). Post-exercise plasma [NO3−] was higher than pre-exercise (562 ± 89 µM vs. 300 ± 73 µM; p < 0.05) and plasma [NO2−] was not significantly different pre- (280 ± 58 nM) and post-exercise (228 ± 63 nM) in the BR condition (p > 0.05). Mean power output during the final 30 s of the end-sprint was greater after BR (390 ± 38 W) compared to PL (365 ± 41 W; p < 0.05). There were no differences between BR and PL in any muscle oxygenation variables during moderate-intensity cycling (p > 0.05), but muscle [deoxyhaemoglobin] kinetics was faster during the end-sprint in BR (6.5 ± 1.4 s) compared to PL (7.3 ± 1.4 s; p < 0.05). These findings suggest that NO3− supplementation has the potential to improve end-sprint performance in endurance events when ingested prior to and during exercise.

8.
Appl Physiol Nutr Metab ; 46(1): 86-89, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32835490

RESUMEN

This study tested the hypothesis that exposure to chlorine-sterilised pool water would impair oral nitrate reduction (ONR). ONR was assessed in elite swimmers before and after morning and afternoon pool-based training. Nonswimmers were only assessed in the morning. ONR was similar in swimmers and nonswimmers (P = 1.000) and unchanged before and after morning and afternoon training (P ≥ 0.341). Therefore, exposure to chlorinated pool water does not interfere with ONR. Novelty Exposure to chlorine-sterilised pool water does not impair oral nitrate reduction in elite swimmers.


Asunto(s)
Atletas/estadística & datos numéricos , Cloro/metabolismo , Boca/metabolismo , Nitratos/metabolismo , Piscinas , Natación , Adulto , Femenino , Humanos , Masculino , Reino Unido , Agua/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...